Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available February 1, 2027
-
Free, publicly-accessible full text available October 1, 2026
-
Machine learning enabled measurements of astrophysical ( ) reactions with the SECAR recoil separatorThe synthesis of heavy elements in supernovae is affected by low-energy and reactions on unstable nuclei, yet experimental data on such reaction rates are scarce. The SECAR (SEparator for CApture Reactions) recoil separator at FRIB (Facility for Rare Isotope Beams) was originally designed to measure astrophysical reactions that change the mass of a nucleus significantly. We used a novel approach that integrates machine learning with ion-optical simulations to find an ion-optical solution for the separator that enables the measurement of reactions, despite the reaction leaving the mass of the nucleus nearly unchanged. A new measurement of the reaction in inverse kinematics with a MeV/nucleon beam (corresponding to MeV proton energy in normal kinematics) yielded a cross-section of mb and served as a proof of principle experiment for the new technique demonstrating its effectiveness in achieving the required performance criteria. This novel approach paves the way for studying astrophysically important reactions on unstable nuclei produced at FRIB. Published by the American Physical Society2025more » « less
-
Abstract Neutron-induced nuclear reactions play an important role in the Big Bang Nucleosynthesis. Their excitation functions are, from an experimental point of view, usually difficult to measure. Nevertheless, in the last decades, big efforts have led to a better understanding of their role in the primordial nucleosynthesis network. In this work, we apply the Trojan Horse Method to extract the cross section at astrophysical energies for the3He(n,p)3H reaction after a detailed study of the2H(3He,pt)H three-body process. Data extracted from the present measurement are compared with other published sets. The reaction rate is also calculated, and the impact on the Big Bang nucleosynthesis is examined in detail.more » « less
-
Abstract The abundance and distribution of44Ti tells us about the nature of the core-collapse supernovae explosions. There is a need to understand the nuclear reaction network creating and destroying44Ti in order to use it as a probe for the explosive mechanism. The44Ti(α, p)47V reaction is a very important reaction and it controls the destruction of44Ti. Difficulties with direct measurements have led to an attempt to study this reaction indirectly. Here, the first step of the indirect study which is the identification of levels of the compound nucleus48Cr is presented. A 100-MeV proton beam was incident on a50Cr target. States in48Cr were populated in the50Cr(p, t)48Cr reaction. The tritons were momentum-analysed in the K600 Q2D magnetic spectrometer at iThemba LABS.more » « less
An official website of the United States government
